Logic of Emotion Lab

Off screen link: Skip to content Off screen link: Skip to search
Princeton University
Home

Main Menu

  • Home
  • Research
  • Mission & Values
  • People
  • Publications
  • News
  • Resources
  • Get Involved

Search

Big team science reveals promises and limitations of machine learning efforts to model the physiological basis of affective experience

Author
N.A. Coles, B. Perz, M. Behnke, J. Eichstaedt, S.-H. Kim, T. Vu, C. Raman, J. Tejada, V. Huynh, G. Zhang, T. Cui, S. Podder, R. Chavda, S. Pandey, A. Upadhyay, J. Padilla-Buritica, C. Causil, L. Ji, F. Dollack, K. Kiyokawa, H. Liu, M. Perusquia-Hernandez, H. Uchiyama, X. Wei, H. Cao, Z. Yang, A. Iancarelli, K. McVeigh, Y. Wang, I. Berwian, J. Chiu, Dan-Mircea Mirea, Erik Nook, Henna Vartiainen, Claire Whiting, Y. Cho, S.-M. Chow, Z. Fisher, Y. Li, X. Xiong, Y. Shen, E. Tagliazucchi, L. Bugnon, R. Ospina, N. Bruno, T. D'Amelio, F. Zamberlan, L. Diaz, J. Pinzon-Arenas, H. Posada-Quintero, M. Bilalpur, S. Hinduja, F. Marmolejo-Ramos, S. Canavan, L. Jivnani, S. Saganowski
Publication Year
2025

Type

Journal Article
Journal
Royal Society Open Science
Volume
12
Issue
6
Pages
241778
DOI
10.1098/rsos.241778
  • Google Scholar
  • BibTeX
  • EndNote X3 XML

Footer

LEmo Lab Logo, a colorful swirl

Logic of Emotion Lab

Email Us

Lab Wiki

 

  • Diversity & Non-Discrimination
  • Accessibility Help

© 2025 The Trustees of Princeton University

Princeton University